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Consider the following stochastic heat equation (SHE)

∂u(t, x)

∂t
=

1

2
∆u(t, x) + b(u(t, x)) + σ(u(t, x))Ẇ (t, x) (1)

for t ∈ [0, T ] , x ∈ Rd.

Initial condition u0, a bounded function.

Ẇ is a centered Gaussian noise with covariance structure

E
[
Ẇ (s, y)Ẇ (t, x)

]
= δ(t− s)f(x− y) ,

f is a non-negative, non-negative definite locally integrable function.

b and σ are locally Lipschitz.

Question: existence and uniqueness of the solution.
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Gaussian noise

W = {W (φ), φ ∈ C∞
0 ([0, T ]× Rd)} is a zero mean Gaussian family

with covariance

E(W (φ)W (ψ)) =

∫ T

0

∫
Rd

∫
Rd

φ(t, x)f(x− y)ψ(t, y)dxdydt

=

∫ T

0
⟨φ(t, ·), ψ(t, ·)⟩Hdt

W (φ) can be extended to W (1[0,t]1[0,x]), which is denoted by W (t, x).

Ẇ (t, x) := ∂d+1W
∂t∂x1···∂xd

, in the distributional sense.
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The solution is understood in the mild form:

u(t, x) =ptu0(x) +

∫ t

0

∫
Rd

pt−s(x− y)b(u(s, y))dyds

+

∫ t

0

∫
Rd

pt−s(x− y)σ(u(s, y))W (ds, dy) .

pt(x) is the heat kernel,

pt(x) =
1

(2πt)d/2
e−

|x|2
2t .

The stochastic integral is the Walsh integral.
Properties of Walsh integral:

(1) E
∫ t

0

∫
Rd

X(s, y)W (ds, dy) = 0

(2) E
(∫ t

0

∫
Rd

X(s, y)W (ds, dy)

)2

= E
∫ t

0

∫
Rd

∫
Rd

X(s, y)X(s, y′)f(y − y′)dydy′ds .
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Classical case

We temporarily assume that
b and σ globally Lipschitz, Lipschitz coefficients Lb and Lσ .
b(0) = σ(0) = 0.
u0 is a bounded function.

Dalang’s condition: ∫
Rd

f̂(ξ)

1 + |ξ|2
dξ <∞ .

Existence and uniqueness: Picard iteration.

Define: u1(t, x) = pt ∗ u0(x), and

un+1(t, x) =pt ∗ u0(x) +
∫ t

0

∫
Rd

pt−s(x− y)b(un(s, y))dyds

+

∫ t

0

∫
Rd

pt−s(x− y)σ(un(s, y))W (ds, dy)
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Second moment both sides:

E|un+1(t, x)|2 ≲|pt ∗ u0(x)|2

+

(
Lb

∫ t

0

∫
Rd

pt−s(x− y)∥un(s, y)∥L2(Ω)dyds

)2

+

∫ t

0

∫
Rd

∫
Rd

pt−s(x− y)pt−s(x− y′)f(y − y′)

× Lσ∥un(s, y)∥L2(Ω)Lσ∥un(s, y′)∥L2(Ω)dydy
′ds
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Supremum over the spatial variable,

sup
x

E|un+1(t, x)|2 ≲ sup
x

|pt ∗ u0(x)|2

+ L2
bt

∫ t

0
sup
x

E|un(s, x)|2ds

+ L2
σ

∫ t

0

∫
Rd

∫
Rd

pt−s(y)pt−s(y
′)f(y − y′)dydy′

× sup
x

E|un(s, x)|2ds

Dalang’s condition
∫
Rd

f̂(ξ)
1+|ξ|2dξ <∞⇐⇒ integrability of∫ t

0

∫
Rd

∫
Rd

pt−s(y)pt−s(y
′)f(y − y′)dydy′ds

=

∫ t

0

∫
Rd

e−(t−s)|ξ|2 f̂(ξ)dξds =

∫
Rd

1− e−t|ξ|2

|ξ|2
f̂(ξ)dξ
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Existence: replace un above by un − un−1. We get a contraction,
un(t, x) is a Cauchy sequence.

Uniqueness: standard argument.

We also get the moment growth

E|u(t, x)|p ≤ ∥u0∥pL∞(Rd)
etCp,f ,

If assume the improved Dalang’s condition∫
Rd

f̂(ξ)

(1 + |ξ|2)1−α
dξ <∞ , for some 0 < α ≤ 1 ,

Moment bounds

E|u(t, x)|p ≤ ∥u0∥pL∞(Rd)
exp

(
Ctp1+

1
α

)
.

u(t, x) ∈ Cα/2−,α−((0, T ]× Rd).

If b or σ is not globally Lipschitz, Picard iteration does not work.
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Back to superlinear problem, ∂u∂t =
1
2∆u+ b(u) + σ(u)Ẇ

Bonder and Groisman 09’: additive noise, bounded interval.

Osgood condition
∫ ∞

1

du

b(u)
<∞ =⇒ finite time blowup.

Foondun and Nualart 21’: additive noise, more general domain.

Osgood condition ⇐⇒ finite time blowup.

Salins 21’: 1, additive noise, super-linear drift. 2, multiplicative noise,
globally Lipschitz drift term, Rd.
Dalang, Khoshnevisan and Zhang, 19’: multiplicative noise, super-linear
drift term, space-time white noise, [0, 1].

|b(z)| = O(|z| log |z|) |σ(z)| = o(|z|(log |z|)1/4) , |z| → ∞

Millet and Sanz-Solé, 21’: stochastic wave equation, multiplicative
noise, super-linear drift term, 1,2,3-d.
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Main ideas in these papers:

The equation is in a bounded domain x ∈ D.

Truncate b and σ, bn(u) = u for |u| ≤ n and bn(u) = b(±n) for |u| > n.

bn, σn globally Lipschitz =⇒ unique solution un(t, x).

Control the size of |un(t, x)|,

τn = inf

{
t : sup

x∈D
|un(t, x)| > n

}
.

Before τn, bn(un(t, x)) = b(un(t, x)), solution is constructed from 0 to
τn.

Show τn ≥ T a.s. as n→ ∞ =⇒ global solution.
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Show that P (τn < T ) → 0 as n→ ∞,

τn < T ⇐⇒ sup
t≤T

sup
x∈D

|un(t, x)| > n

Chebyshev’s inequality.

P {τn < T} ≤ 1

np
E sup

t≤T
sup
x∈D

|un(t, x)|p

Kolmogorov continuity theorem to estimate

E sup
t≤T

sup
x∈D

|un(t, x)|p .

Bounded domain is essential.

Wave equation has finite speed propagation, essentially in a bounded
space.

For stochastic heat equation, supx∈R u(t, x) may be infinity for any
t > 0.
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Theorem (Conus, Joseph, Khoshnevisan 2013)
Let u0 > 0 be uniformly bounded away from 0 and ∞ and u(t,x) satisfies

∂u

∂t
=

1

2

∂2u

∂x2
+ σ(u)Ẇ .

1 If σ > 0 is uniformly bounded away from 0, then a.s.

lim sup
|x|→∞

u(t, x)

(log |x|)1/6
≥ C ,

2 If σ(u) = u,

log sup
x∈[−R,R]

u(t, x) ≈ (logR)2/3 , as R→ ∞ .

Also for additive noise, the solution is not bounded on Rd.
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Kolmogorov continuity theorem does not work for the whole Rd.
Still want to estimate

E sup
t≤T

sup
x∈Rd

|un(t, x)|p .

u0 has sufficient decay + Da Prato and Zabczyk’s factorization method
=⇒ E supt≤T,x∈Rd |un(t, x)|p.
Factorization method

Z(t, x) =

∫ t

0

∫
Rd

pt−s(x− y)Φ(s, y)W (ds, dy) .

Z(t, x) =
sin (βπ/2)

π

∫ t

0

∫
Rd

(t− r)−1+β/2pt−r(x− z)Y (r, z)dzdr,

Y (r, z) =

∫ r

0

∫
Rd

(r − s)−β/2pr−s(z − y)Φ(s, y)W (ds, dy) ,

E

(
sup

0≤t≤T,x∈Rd

|Z(t, x)|k
)

≤ CT

∫ T

0
dr

∫
Rd

dzE
(
|Y (r, z)|k

)
,
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Theorem (Chen-H’ 2023)

If u0 ∈ L∞(Rd) ∩ Lp(Rd), assume improved Dalang’s condition with
0 < α ≤ 1, b(0) = σ(0) = 0 and

|b(u)| = o(u log u) , |σ(u)| = o(u(log u)α/2) , as u→ ∞ ,

there exists a unique global solution to ∂u
∂t = 1

2∆u+ b(u) + σ(u)Ẇ .

More general b and σ?
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Osgood type assumptions
∂u
∂t

= 1
2
∆u+ b(u) + σ(u)Ẇ ,

∫
Rd

f̂(ξ)dξ

(1+|ξ|2)1−α < ∞

1 Both b and σ are locally Lipschitz continuous.
2 b(0) = σ(0) = 0,
3 There exists a positive, increasing function h : [0,∞) → (0,∞) such

that:
1 For all u ∈ R, |b(u)| ≤ h(|u|) .
2 (Superlinear growth) u→ h(u)

u is non-decreasing on R+.
3 (Osgood-type condition) ∫ ∞

1

1

h(u)
du = +∞ .

4 For all u ∈ R, it holds that

|σ(u)| ≤ |u|
(
h(|u|)
|u|

)α/2(
log

(
h(|u|)
|u|

))−1/2

.

Jingyu Huang super-linear SHE 15 / 26



Theorem (Chen, Foondun, H’, Salins)

Assume that u0 ∈ L∞(Rd) ∩ Lp(Rd) for some p ≥ 2. Also assume the
improved Dalang’s condition and b, σ above. Then,

1 There exists a unique solution u(t, x) to SHE for all
(t, x) ∈ (0,∞)× Rd.

2 The solution u(t, x) is Hölder continuous: u ∈ Cα/2−,α−((0, T ]× Rd)
a.s.

Osgood type conditions covers:
b(u) = o(u log u) and σ(u) = o(u(log u)α/2) in Chen-H’ 2023.
Spcae-time white noise: α = 1/2,

b(u) ∼ u log u , σ(u) ∼ u(log u)1/4(log log u)−1/2

Generally α ∈ (0, 1],

b(u) ∼ u
K∏
k=1

logk u , σ(u) ∼ u(log2 u)−1/2
K∏
k=1

(
logk u

)α/2
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Idea of the proof

Define the cutoff functions for b and σ:

bn(u) :=


b(−3n) if u < −3n

b(u) if |u| ≤ 3n

b(3n) if u > 3n
and σn(u) =


σ(−3n) if u < −3n

σ(u) if |u| ≤ 3n

σ(3n) if u > 3n

Consider the equation

un(t, x) =

∫
Rd

pt(x− y)u0(y)dy +

∫ t

0

∫
Rd

pt−s(x− y)bn(un(s, y))dyds

+

∫ t

0

∫
Rd

pt−s(x− y)σn(un(s, y))W (ds, dy)

Unique global solution un(t, x) for each n.
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Define a sequence of stopping times

τn = inf{t > 0 : ∥un(t, ·)∥V > 3n} .

The V -norm

∥ · ∥V := max
(
∥ · ∥Lp(Rd), ∥ · ∥L∞(Rd)

)
.

Before the stopping time τn, the truncation does not take effect.

Define the local mild solution by setting

u(t, x) = un(t, x) when t < τn .

Global solution exists if τn → ∞ with probability one.

Jingyu Huang super-linear SHE 18 / 26



Build a deterministic sequence

an = min

{
Θ3n+1

h(3n+1)
,
1

n

}
, Θ <

1

3
small, chosen later

Osgood type assumption on h(u),∫ ∞

1

1

h(u)
du = ∞ =⇒

∞∑
n=1

an = ∞ .

Want to show that there exists a q > 1 such that

P (τn+1 − τn < an) ≤ Cn−q , for all n ∈ N .

Idea: restart the equation at the stopping times τn.
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un+1(τn + t, x)

=pt ∗ un+1(τn, x) +

∫ t

0

∫
Rd

pt−s(x− y)bn+1(un+1(τn + s, y))dyds

+

∫ t

0

∫
Rd

pt−s(x− y)σn+1(un+1(τn + s, y))W (τn + ds, dy)

=Un+1(t, x) + In+1(t, x) + Zn+1(t, x) .

{τn+1 − τn ≤ an} ⊆

{
sup

t∈[0,(τn+1−τn)∧an]
∥Zn+1(t, ·)∥V ≥ 3n

}

Chebyshev inequality + factorization method

P (τn+1 − τn < an) ≤ Cn−q .
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Optimality of b

Theorem
Assume that b is nonnegative, convex, b(0) = σ(0) = 0 and σ bounded. If b
satisfies the finite Osgood condition∫ ∞

1

1

b(u)
du <∞ .

Then, for any p ≥ 2, there exists some nonnegative initial condition u0(·) ∈ V
such that solutions will explode in finite time with positive probability.

Idea of the proof: multiply both sides of mild formulation by p1−t(x) and
integrate.
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∫
Rd

p1−t(x)u(t, x)dx =

∫
Rd

u0(y)p1(y)dy

+

∫ t

0

∫
Rd

p1−s(y)b(u(s, y))dyds

+

∫ t

0

∫
Rd

p1−s(y)σ(u(s, y))W (ds, dy) .

Written as

Yt = Y0 +Dt +Mt .

Let Xt = EYt.

Xt ≥
∫
Rd

u0(y)p1(y)dy +

∫ t

0
b(Xs)ds

Xt blows up at time 1
2 when u0 is large.
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Yt = Y1/2 +D∗
t +M∗

t ,

D∗
t =

∫ t

1/2

∫
Rd

p1−s(y)b(u(s, y))dyds

M∗
t =

∫ t

1/2

∫
Rd

p1−s(y)σ(u(s, y))W (ds, dy) .

Jensen’s inequality

Yt ≥ Y1/2 +M∗
t +

∫ t

1/2
b(Ys)ds

Y1/2 +M∗
t is large for all t ∈ [0, 12 ] with positive probability.

Yt blows up with positive probability.
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Thank you.
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